
Module 8: Undecidability and Introduction to 
Complexity Theory 
Module Overview: 

This module embarks on an in-depth exploration of the fundamental boundaries of 
computation. We will first meticulously investigate the profound concept of undecidability, 
discovering problems for which no algorithm, no matter how sophisticated or powerful, can 
ever consistently provide a definitive solution for all possible inputs. This exploration will 
fundamentally redefine our understanding of the scope and limitations of what is computable 
by machines. Following this, we will transition into the vibrant field of computational 
complexity theory. Here, our focus shifts from the binary question of what can be computed 
to the nuanced consideration of how efficiently it can be computed. We will introduce 
rigorous formal methods for quantifying the computational resources (primarily time and 
space) consumed by algorithms and categorize problems based on these resource 
demands. This module serves as a crucial intellectual bridge, not only by illuminating the 
inherent limitations of computation but also by furnishing the essential analytical tools to 
assess the practical feasibility and scalability of solvable problems, which is paramount in 
modern computer science. 

Learning Objectives: 

Upon successful completion of this module, students will be able to: 

●​ Precisely define and provide diverse, concrete examples of undecidable problems, 
articulating their significance. 

●​ Comprehend the historical significance, the detailed step-by-step construction, and 
the profound implications of the undecidability of the Halting Problem. 

●​ Master the powerful technique of reducibility as a rigorous method for proving the 
undecidability of various computational problems beyond the Halting Problem. 

●​ Accurately distinguish and categorize languages within the Chomsky hierarchy, 
specifically differentiating between decidable (recursive), recognizable (recursively 
enumerable), and undecidable languages. 

●​ Articulate the core concepts of time and space complexity, applying Big-O notation 
for rigorous asymptotic analysis of algorithmic efficiency. 

●​ Formally define, provide illustrative examples for, and critically differentiate between 
the pivotal complexity classes P (Polynomial Time) and NP (Nondeterministic 
Polynomial Time). 

●​ Grasp the concept of NP-completeness with a comprehensive understanding of its 
definition, its implications for the practical solvability of problems, and its central role 
in the open P vs. NP question. 

Module Breakdown: 

8.1 Undecidability: The Ultimate Limits of Computation 

●​ 8.1.1 Reaching the Uncomputable: An Introduction to Undecidability 
○​ Recap of Decidability and Computability: We'll begin by solidifying our 

understanding from previous modules. A problem is decidable if there exists 



a Turing Machine (TM) that halts on every possible input, correctly indicating 
"yes" or "no" for whether the input is in the language. A problem is 
recursively enumerable (RE), or recognizable, if there exists a TM that 
halts and accepts all inputs in the language, but may either halt and reject or 
loop indefinitely for inputs not in the language. We will clarify that 
computability, in this context, refers to problems solvable by a TM. 

○​ The Inherent Boundaries of Algorithms: This section introduces the 
counter-intuitive idea that not every precisely defined problem can be solved 
by an algorithm. We will discuss the fundamental philosophical shift this 
represents: it's not about lacking sufficient computing power or cleverness, 
but about a fundamental, theoretical impossibility. This concept challenges the 
initial intuition that any problem we can clearly describe, we should be able to 
solve algorithmically. 

○​ The Philosophical and Practical Ramifications: We will explore the 
broader implications of undecidability. For instance, in software engineering, 
the undecidability of the Halting Problem implies that a universal debugger 
capable of detecting infinite loops in any arbitrary program is impossible. In 
artificial intelligence, it limits what intelligent systems can definitively conclude 
about other programs or even themselves. In mathematics, it highlights the 
existence of unprovable statements within formal systems (Gödel's 
Incompleteness Theorems). 

●​ 8.1.2 The Cornerstone of Undecidability: The Halting Problem 
○​ Formal Definition: We will precisely define the Halting Problem as: Given an 

arbitrary Turing Machine M (represented as a string encoding its transition 
function, states, alphabet, etc.) and an arbitrary input string w, will M 
eventually halt (stop computing) when started with input w? We represent this 
as the language HALTTM​={⟨M,w⟩∣M is a TM and M halts on input w}. 

○​ Proof of Undecidability by Diagonalization (Detailed Construction): This 
is a critical section requiring careful exposition. 

■​ Assumption for Contradiction: We begin by assuming, for the sake 
of contradiction, that the Halting Problem is decidable. This implies the 
existence of a hypothetical Halting Detector Turing Machine, let's 
call it H, which takes ⟨M,w⟩ as input and always halts, outputting 
"accept" if M halts on w, and "reject" if M does not halt on w. 

■​ Construction of the Diagonal Machine (D): We then design a new 
Turing Machine, D, with the following behavior: 

■​ D takes a single input ⟨M⟩ (an encoding of a Turing Machine 
M). 

■​ D uses H as a subroutine to determine what M would do if 
given its own encoding as input (i.e., D calls H(⟨M,⟨M⟩⟩)). 

■​ If H indicates that M halts on ⟨M⟩, then D enters an infinite loop 
(i.e., D does not halt). 

■​ If H indicates that M does not halt on ⟨M⟩, then D halts (e.g., D 
accepts). 

■​ The Paradoxical Outcome: Now, we consider what happens if we 
run D with its own encoding as input: D(⟨D⟩). 

■​ According to the definition of D: If D halts on ⟨D⟩, then D must 
enter an infinite loop. This is a contradiction. 



■​ According to the definition of D: If D does not halt on ⟨D⟩, then 
D must halt. This is also a contradiction. 

■​ Since our initial assumption (that H exists and thus the Halting 
Problem is decidable) leads to an unavoidable contradiction, the 
assumption must be false. Therefore, the Halting Problem is 
undecidable. 

○​ Profound Implications: Re-emphasizing that this proof means no algorithm 
can ever perfectly analyze all programs to determine if they will terminate. 
This limits formal verification, automated debugging, and even virus detection. 
It establishes a fundamental theoretical ceiling on what can be achieved by 
computation. 

●​ 8.1.3 Leveraging Reducibility to Prove Undecidability 
○​ The Power of Reduction: This section introduces one of the most powerful 

techniques in computability theory. The core idea is that if we can "transform" 
an instance of a known undecidable problem (Problem A) into an instance of 
another problem (Problem B) in a computable way, such that a solution to 
Problem B would give us a solution to Problem A, then Problem B must also 
be undecidable. If Problem B were decidable, then Problem A would also be 
decidable, which contradicts our knowledge. 

○​ Formal Definition of Many-One Reduction (≤m​): We will formally define a 
many-one reduction from language A to language B (A≤m​B) as the existence 
of a total computable function f such that for any string w, w∈A if and only if 
f(w)∈B. This function f is called the "reduction function." We will stress that f 
must itself be computable. 

○​ Application Examples (Detailed Reductions): 
■​ Undecidability of the Empty Language Problem (ETM​): 

ETM​={⟨M⟩∣L(M)=∅}. We will prove HALTTM​≤m​ETM​ (or its 
complement). Given ⟨M,w⟩, we construct a new TM M′ that ignores its 
own input, simulates M on w, and if M halts on w, then M′ accepts all 
inputs; otherwise, M′ loops. If M halts on w, L(M′) is Σ∗. If M doesn't 
halt on w, L(M′) is ∅. Thus, deciding if L(M′) is empty tells us if M halts 
on w. 

■​ Undecidability of the Equivalence Problem for Turing Machines 
(EQTM​): EQTM​={⟨M1​,M2​⟩∣L(M1​)=L(M2​)}. We will prove 
ETM​≤m​EQTM​. Given ⟨M⟩, we construct ⟨M,M∅​⟩ where M∅​ is a TM 
that accepts nothing. Deciding if L(M)=L(M∅​) is equivalent to deciding 
if L(M) is empty. 

■​ Undecidability of the Regularity Problem for Turing Machines 
(REGULARTM​): REGULARTM​={⟨M⟩∣L(M) is a regular language}. 
Proof by reduction from the Halting Problem or ETM​. 

○​ Generalized Undecidability: Rice's Theorem: 
■​ Statement of Rice's Theorem: For any non-trivial property P of 

recursively enumerable languages, the problem of deciding whether a 
given Turing Machine M accepts a language with property P is 
undecidable. (P is non-trivial if it is true for some RE languages and 
false for others). 

■​ Understanding "Non-Trivial Property": We will provide concrete 
examples: "L(M) is finite" (non-trivial), "L(M) contains an even number 



of strings" (non-trivial), "L(M) is regular" (non-trivial). Contrast with 
trivial properties: "L(M) is a language" (trivial, true for all RE 
languages), "L(M) is not a language" (trivial, false for all RE 
languages). 

■​ Understanding "Property of the Language": Emphasize that Rice's 
Theorem applies to properties of the language accepted by the TM, 
not properties of the TM itself (e.g., "M has 5 states" is decidable, as 
it's a property of the TM's description, not its language). 

■​ Utility of Rice's Theorem: Demonstrate its power as a shortcut for 
proving undecidability. For instance, determining if a TM accepts a 
context-free language, or if it accepts a language that includes "foo", 
are all undecidable by Rice's Theorem. 

●​ 8.1.4 The Hierarchy of Languages: Decidable, Recognizable, Undecidable 
○​ Review of Language Classes: Briefly review the Chomsky Hierarchy: 

Regular Languages (Type 3), Context-Free Languages (Type 2), 
Context-Sensitive Languages (Type 1). We'll emphasize that these are all 
decidable. 

○​ Recursively Enumerable (RE) Languages (Type 0): These are precisely 
the languages accepted by Turing Machines. We will reiterate that for 
w∈L(M), M halts and accepts. For w∈/L(M), M might halt and reject, or it 
might loop forever. This class includes undecidable languages. 

○​ Recursive (Decidable) Languages: These are languages for which a Turing 
Machine exists that halts on all inputs, always giving a "yes" or "no" answer. 
They are a proper subset of RE languages. 

○​ The Relationship and Strict Inclusions: We will clearly state that: 
■​ Regular Languages ⊂ Context-Free Languages ⊂ Context-Sensitive 

Languages ⊂ Recursive Languages ⊂ Recursively Enumerable 
Languages. 

■​ The Halting Problem is an example of an RE language that is not 
recursive. The complement of the Halting Problem is not even RE. 

○​ Visual Representation (Venn Diagram): A clear visual diagram will be 
presented to illustrate the nested relationships between these classes of 
languages, reinforcing the hierarchy and the boundaries. 

○​ Complements of Languages: We will discuss the important property that a 
language L is recursive if and only if both L and its complement Lˉ are 
recursively enumerable. We will show that if L is RE but not recursive, then Lˉ 
cannot be RE (otherwise, L would be recursive). This explains why the 
complement of the Halting Problem is not recursively enumerable. 

8.2 Introduction to Complexity Theory: How Hard is a Problem Practically? 

●​ 8.2.1 Quantifying Computational Resources: Time and Space Complexity 
○​ Beyond Decidability: The Need for Efficiency: While decidability tells us if 

a problem can be solved, it doesn't tell us if it can be solved practically. We 
will introduce the concept of "tractability" and the practical limitations imposed 
by exponential growth. A problem might be decidable, but if it takes longer 



than the age of the universe to solve for reasonable input sizes, it's effectively 
unsolvable. 

○​ Time Complexity: 
■​ Definition: The number of elementary computational steps (e.g., 

reading a symbol, writing a symbol, moving the head, changing state) 
a Turing Machine takes to halt on a given input. 

■​ Measuring as a Function of Input Size (n): We consider the 
worst-case running time, i.e., the maximum number of steps taken for 
any input of size n. 

■​ Big-O Notation (O): This is a cornerstone. We will formally define 
O(g(n)) as the set of functions f(n) such that there exist positive 
constants c and n0​ where for all n≥n0​, f(n)≤c⋅g(n). We will explain its 
purpose: to describe the upper bound of an algorithm's growth rate in 
terms of input size, ignoring constant factors and lower-order terms 
that become insignificant for large inputs. 

■​ Examples of Different Time Complexities: We will provide practical 
examples and typical algorithmic behaviors for each: 

■​ O(1) (Constant): Accessing an array element. 
■​ O(logn) (Logarithmic): Binary search. 
■​ O(n) (Linear): Iterating through a list. 
■​ O(nlogn) (Linearithmic): Efficient sorting algorithms like Merge 

Sort, Quick Sort. 
■​ O(n2) (Quadratic): Nested loops, simple selection/bubble sort. 
■​ O(nk) (Polynomial): Any algorithm whose running time is 

bounded by a polynomial in n. 
■​ O(2n) (Exponential): Brute-force search for subsets. 
■​ O(n!) (Factorial): Brute-force permutations. 

■​ Comparing Growth Rates: Visual examples and discussions will 
highlight how exponential and factorial complexities quickly become 
impractical for even modest input sizes, while polynomial complexities 
remain manageable. 

○​ Space Complexity: 
■​ Definition: The number of tape cells a Turing Machine uses during its 

computation on a given input. This includes the input tape, work tapes, 
etc. 

■​ Measurement and Big-O Notation: Similar to time complexity, we 
measure worst-case space as a function of input size n using Big-O 
notation. 

■​ Relationship between Time and Space: Discussing the intuitive 
observation that a computation that takes T(n) time can use at most 
T(n) space (since a TM can only visit T(n) cells in T(n) steps). 
However, space can be much smaller than time (e.g., logarithmic 
space algorithms). 

●​ 8.2.2 The Class P: The Realm of Efficient Solvability 
○​ Formal Definition of P: The class P (for Polynomial Time) is formally defined 

as the set of all decision problems that can be solved by a deterministic 
Turing Machine in time O(nk) for some constant k≥1. This means the running 
time is bounded by a polynomial function of the input size. 



○​ Polynomial Time Growth (The Definition of "Efficient"): We will elaborate 
on why polynomial time is generally equated with "efficient" or "tractable" 
computation. The rationale is that even for large n, nk grows much slower 
than 2n or n!, making such algorithms feasible in practice. We will contrast 
this with the rapid explosion of exponential functions. 

○​ Examples of Problems in P (with Algorithmic Insight): 
■​ Sorting: We'll mention common algorithms like Merge Sort or Quick 

Sort and their O(nlogn) complexity, which falls within P. 
■​ Searching: Binary Search in a sorted array, with its O(logn) 

complexity. 
■​ Graph Connectivity: Using Breadth-First Search (BFS) or Depth-First 

Search (DFS) to determine if a graph is connected or if two vertices 
are connected, with complexity O(V+E) (where V is vertices, E is 
edges). 

■​ Primality Testing: The decision problem "Is a given number prime?" 
was famously shown to be in P by the AKS algorithm in 2002. This 
was a significant breakthrough as previous general algorithms were 
much slower. 

■​ Shortest Path in Unweighted Graphs: Solvable efficiently using 
BFS. 

○​ Church-Turing Thesis Revisited for Complexity: While the original 
Church-Turing thesis states that all "reasonable" models of computation are 
equivalent in terms of what they can compute, a stronger version in 
complexity theory suggests they are polynomially equivalent. This means if a 
problem is solvable in polynomial time on one computational model (e.g., a 
RAM machine), it is also solvable in polynomial time on a multi-tape Turing 
Machine, and vice-versa. This justifies defining complexity classes based on 
TMs. 

●​ 8.2.3 The Class NP: Problems with Easily Verifiable Solutions 
○​ Motivation: Many critical problems, while seemingly hard to solve efficiently, 

have the property that if someone gives you a proposed solution, it's very 
easy to check if that solution is correct. This distinction is the essence of NP. 

○​ Formal Definition of NP: The class NP (for Nondeterministic Polynomial 
Time) is the set of all decision problems for which, if the answer is "yes," there 
exists a short ("polynomial-length") "certificate" (also called a "proof" or 
"witness") that can be verified by a deterministic Turing Machine in 
polynomial time. 

○​ The Nondeterministic Perspective (Intuitive Explanation): While the 
certificate-based definition is standard, the name "NP" comes from an 
equivalent definition: problems solvable by a nondeterministic Turing 
Machine in polynomial time. We will intuitively explain nondeterminism as the 
ability to "guess" the correct path to a solution or explore all possible paths 
simultaneously. If any path leads to an acceptance within polynomial time, the 
NTM accepts. The polynomial-time verifier essentially simulates this 
"guessing" process with the certificate providing the "guess." 

○​ Key Distinction: P vs. NP: We will highlight the fundamental difference: P is 
about finding a solution efficiently (polynomial time). NP is about verifying a 
given solution efficiently (polynomial time). Every problem in P is also in NP (if 



you can find a solution in poly-time, you can certainly verify it in poly-time by 
just re-solving it). So, P ⊆ NP. 

○​ Examples of Problems in NP (with Certificate Insight): 
■​ Boolean Satisfiability Problem (SAT): Given a Boolean formula in 

Conjunctive Normal Form (CNF), is there an assignment of truth 
values to its variables that makes the formula true? (Certificate: A 
specific assignment of truth values to all variables. Verification: 
Substitute values and evaluate the formula, which is polynomial). 

■​ Traveling Salesperson Problem (TSP-Decision): Given a list of 
cities, distances between them, and a maximum total distance K, is 
there a tour that visits each city exactly once and returns to the 
starting city with a total distance of at most K? (Certificate: A specific 
permutation of cities representing a tour. Verification: Sum the 
distances in the tour and check if it's ≤K, which is polynomial). 

■​ Clique Problem: Given a graph G and an integer k, does G contain a 
clique (a complete subgraph where every pair of distinct vertices is 
connected by an edge) of size at least k? (Certificate: The set of k 
vertices forming the clique. Verification: Check if all pairs of vertices in 
the set are connected, which is polynomial). 

■​ Subset Sum Problem: Given a set of integers S and a target sum T, 
is there a non-empty subset of S whose elements sum to T? 
(Certificate: The subset of integers. Verification: Sum the elements of 
the subset and check if it equals T, which is polynomial). 

○​ The P versus NP Question: This is one of the seven Millennium Prize 
Problems. 

■​ Formal Statement: Is P = NP? (i.e., Is every problem whose solution 
can be efficiently verified also a problem whose solution can be 
efficiently found?) 

■​ Implications if P = NP: This would revolutionize computer science 
and many other fields. Cryptographic systems based on the presumed 
hardness of factoring would be broken. Many intractable optimization 
problems could be solved efficiently, leading to breakthroughs in 
logistics, drug discovery, and artificial intelligence. 

■​ Current Belief: The strong consensus among computer scientists is 
that P = NP. This belief is supported by the fact that despite decades 
of intense research, no polynomial-time algorithms have been found 
for many NP problems, yet none have been formally proven to require 
super-polynomial time. 

●​ 8.2.4 NP-Completeness: The "Hardest" Problems in NP 
○​ The Concept of NP-Hardness: A problem H is defined as NP-hard if every 

problem in NP can be reduced to H in polynomial time. This means that if you 
could solve H efficiently (in polynomial time), then you could efficiently solve 
every problem in NP. NP-hard problems are at least as hard as any problem 
in NP. 

○​ Formal Definition of NP-Completeness: A problem is NP-complete if it 
satisfies two conditions: 

■​ It is in NP. (Its solutions can be efficiently verified). 



■​ It is NP-hard. (Every problem in NP can be reduced to it in polynomial 
time). 

○​ The Cook-Levin Theorem (The Genesis of NP-Completeness): 
■​ Statement: The Boolean Satisfiability Problem (SAT) is NP-complete. 
■​ Significance: This groundbreaking theorem (proven independently by 

Stephen Cook and Leonid Levin in the early 1970s) was monumental 
because it demonstrated the existence of an NP-complete problem. 
Before this, it wasn't clear if such "hardest" problems within NP even 
existed. The proof involves showing how the computation of any 
polynomial-time non-deterministic Turing Machine (and thus any 
problem in NP) can be encoded as a very large, but still 
polynomial-sized, Boolean formula. If this formula is satisfiable, the 
NTM accepts. 

○​ Proving NP-Completeness by Reduction (The "Domino Effect"): Once 
SAT was proven NP-complete, a powerful method emerged for proving other 
problems NP-complete. To prove a problem Q is NP-complete: 

■​ Show Q is in NP (by designing a polynomial-time verifier for Q). 
■​ Show Q is NP-hard by constructing a polynomial-time reduction from a 

known NP-complete problem (e.g., SAT, 3-SAT, Clique) to Q. This 
reduction means that if you had an efficient algorithm for Q, you could 
use it to solve the known NP-complete problem efficiently. 

■​ Illustrative Examples of Reductions: 
■​ Reducing SAT to 3-SAT (Boolean formulas in Conjunctive 

Normal Form with at most 3 literals per clause, also 
NP-complete). 

■​ Reducing 3-SAT to Clique: This demonstrates how a problem 
about logical satisfiability can be transformed into a problem 
about finding a dense subgraph in a graph. 

■​ Reducing Clique to Vertex Cover: Showing the relationship 
between finding a complete subgraph and finding a minimum 
set of vertices that covers all edges. 

■​ Reducing Hamiltonian Cycle (finding a cycle visiting every 
vertex exactly once) to TSP-Decision. 

○​ Implications of NP-Completeness: 
■​ Practical Intractability: For most practical purposes, NP-complete 

problems are considered "intractable" for large input sizes. This 
means that while they are decidable, no known algorithm can solve 
them in a reasonable amount of time as the input grows. 

■​ The "One for All" Rule: If someone ever discovers a polynomial-time 
algorithm for any single NP-complete problem, then by virtue of 
polynomial-time reductions, polynomial-time algorithms would exist for 
all other problems in NP. This would definitively prove P = NP. 

■​ Strategies for Dealing with NP-Complete Problems in Practice: 
Since exact polynomial-time solutions are unlikely, we explore 
practical approaches: 

■​ Approximation Algorithms: Algorithms that run in polynomial 
time and guarantee a solution within a certain factor of the 
optimal solution. 



■​ Heuristics: Practical, often greedy, algorithms that find good 
(but not necessarily optimal) solutions quickly, without 
guarantees. 

■​ Restricting Input Size or Structure: Exploiting specific 
properties of the input (e.g., planar graphs, fixed-parameter 
tractable algorithms) to find efficient solutions for subsets of the 
problem. 

■​ Branch and Bound/Backtracking: Exponential-time exact 
algorithms that prune the search space. 

Module Conclusion: 

This module has provided a profound intellectual journey, traversing from the absolute 
theoretical limits of what algorithms can possibly achieve to the very practical considerations 
of computational efficiency. We began by grappling with the inherent undecidability of 
problems like the Halting Problem, which fundamentally sets boundaries on the power of 
computation and reveals the existence of questions beyond algorithmic resolution. 
Subsequently, we transitioned to the realm of computational complexity theory, introducing 
rigorous measures of time and space. The elucidation of the pivotal complexity classes P 
and NP, culminating in the concept of NP-completeness, furnishes a robust framework for 
classifying problems based on their intrinsic difficulty. While the P versus NP question 
continues to be one of the most significant unsolved challenges in computer science, our 
deep understanding of these concepts empowers us to critically analyze computational 
problems, discern between those that are efficiently solvable, those that are likely intractable 
in their general form, and those that are fundamentally beyond the reach of any effective 
computation. This comprehensive knowledge forms an indispensable cornerstone for 
advanced studies in algorithm design, theoretical computer science, and indeed, the very 
philosophy and future direction of computing. 

 


	Module 8: Undecidability and Introduction to Complexity Theory 

